228 research outputs found

    Optimal Sparsification for Some Binary CSPs Using Low-degree Polynomials

    Full text link
    This paper analyzes to what extent it is possible to efficiently reduce the number of clauses in NP-hard satisfiability problems, without changing the answer. Upper and lower bounds are established using the concept of kernelization. Existing results show that if NP is not contained in coNP/poly, no efficient preprocessing algorithm can reduce n-variable instances of CNF-SAT with d literals per clause, to equivalent instances with O(nd−e)O(n^{d-e}) bits for any e > 0. For the Not-All-Equal SAT problem, a compression to size O˜(nd−1)\~O(n^{d-1}) exists. We put these results in a common framework by analyzing the compressibility of binary CSPs. We characterize constraint types based on the minimum degree of multivariate polynomials whose roots correspond to the satisfying assignments, obtaining (nearly) matching upper and lower bounds in several settings. Our lower bounds show that not just the number of constraints, but also the encoding size of individual constraints plays an important role. For example, for Exact Satisfiability with unbounded clause length it is possible to efficiently reduce the number of constraints to n+1, yet no polynomial-time algorithm can reduce to an equivalent instance with O(n2−e)O(n^{2-e}) bits for any e > 0, unless NP is a subset of coNP/poly.Comment: Updated the cross-composition in lemma 18 (minor update), since the previous version did NOT satisfy requirement 4 of lemma 18 (the proof of Claim 20 was incorrect

    FPT is Characterized by Useful Obstruction Sets

    Full text link
    Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for k-Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201

    Constrained Bipartite Vertex Cover: The Easy Kernel is Essentially Tight

    Get PDF
    The CONSTRAINED BIPARTITE VERTEX COVER problem asks, for a bipartite graph G with partite sets A and B, and integers k_A and k_B, whether there is a vertex cover for G containing at most k_A vertices from A and k_B vertices from B. The problem has an easy kernel with 2 * k_A * k_B edges and 4 k_A * k_B vertices, based on the fact that every vertex in A of degree more than k_B has to be included in the solution, together with every vertex in B of degree more than k_A. We show that the number of vertices and edges in this kernel are asymptotically essentially optimal in terms of the product k_A * k_B. We prove that if there is a polynomial-time algorithm that reduces any instance (G,A,B,k_A,k_B) of CONSTRAINED BIPARTITE VERTEX COVER to an equivalent instance (G\u27,A\u27,B\u27,k\u27_A,k\u27_B) such that k\u27_A in (k_A)^{O(1)}, k\u27_B in (k_B)^{O(1)}, and |V(G\u27)| in O((k_A * k_B)^{1 - epsilon}), for some epsilon > 0, then NP subseteq coNP/poly and the polynomial-time hierarchy collapses. Using a different construction, we prove that if there is a polynomial-time algorithm that reduces any n-vertex instance into an equivalent instance (of a possibly different problem) that can be encoded in O(n^{2- epsilon}) bits, then NP subseteq coNP/poly

    Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP

    Get PDF
    The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian cycle C into a new Hamiltonian cycle C\u27 by replacing k edges. We analyze the problem of determining whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in time f(k) n^o(k / log k) for any function f, while (ii) it is possible to improve on the brute-force running time of O(n^k) and save linear factors in the exponent. Modern TSP heuristics are very successful at identifying the most promising edges to be used in k-opt moves, and experiments show that very good global solutions can already be reached using only the top-O(1) most promising edges incident to each vertex. This leads to the following question: can improving k-opt moves be found efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving k-move can be found in time O(n^((23/135+epsilon_k)k)), where lim_{k -> infty} epsilon_k = 0. This improves upon the best-known bounds for general graphs. Due to its practical importance, we devote special attention to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear time. For k <= 7, we give quasi-linear time algorithms for general weights. For k=8 we obtain a quasi-linear time algorithm when the weights are bounded by O(polylog n). On the other hand, based on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic weights on bounded-degree graphs

    Cross-Composition: A New Technique for Kernelization Lower Bounds

    Get PDF
    We introduce a new technique for proving kernelization lower bounds, called cross-composition. A classical problem L cross-composes into a parameterized problem Q if an instance of Q with polynomially bounded parameter value can express the logical OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) we show that if an NP-complete problem cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless the polynomial hierarchy collapses. Our technique generalizes and strengthens the recent techniques of using OR-composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Chromatic Number, Clique, and Weighted Feedback Vertex Set do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. We have similar lower bounds for Feedback Vertex Set.Comment: Updated information based on final version submitted to STACS 201

    Kernelization Lower Bounds By Cross-Composition

    Full text link
    We introduce the cross-composition framework for proving kernelization lower bounds. A classical problem L AND/OR-cross-composes into a parameterized problem Q if it is possible to efficiently construct an instance of Q with polynomially bounded parameter value that expresses the logical AND or OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) with a refinement by Dell and van Melkebeek (STOC 2010), we show that if an NP-hard problem OR-cross-composes into a parameterized problem Q then Q does not admit a polynomial kernel unless NP \subseteq coNP/poly and the polynomial hierarchy collapses. Similarly, an AND-cross-composition for Q rules out polynomial kernels for Q under Bodlaender et al.'s AND-distillation conjecture. Our technique generalizes and strengthens the recent techniques of using composition algorithms and of transferring the lower bounds via polynomial parameter transformations. We show its applicability by proving kernelization lower bounds for a number of important graphs problems with structural (non-standard) parameterizations, e.g., Clique, Chromatic Number, Weighted Feedback Vertex Set, and Weighted Odd Cycle Transversal do not admit polynomial kernels with respect to the vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting the fact that these problems are trivially fixed-parameter tractable for this parameter. After learning of our results, several teams of authors have successfully applied the cross-composition framework to different parameterized problems. For completeness, our presentation of the framework includes several extensions based on this follow-up work. For example, we show how a relaxed version of OR-cross-compositions may be used to give lower bounds on the degree of the polynomial in the kernel size.Comment: A preliminary version appeared in the proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011) under the title "Cross-Composition: A New Technique for Kernelization Lower Bounds". Several results have been strengthened compared to the preliminary version (http://arxiv.org/abs/1011.4224). 29 pages, 2 figure

    Kernelization for Counting Problems on Graphs: Preserving the Number of Minimum Solutions

    Full text link
    A kernelization for a parameterized decision problem Q\mathcal{Q} is a polynomial-time preprocessing algorithm that reduces any parameterized instance (x,k)(x,k) into an instance (x′,k′)(x',k') whose size is bounded by a function of kk alone and which has the same yes/no answer for Q\mathcal{Q}. Such preprocessing algorithms cannot exist in the context of counting problems, when the answer to be preserved is the number of solutions, since this number can be arbitrarily large compared to kk. However, we show that for counting minimum feedback vertex sets of size at most kk, and for counting minimum dominating sets of size at most kk in a planar graph, there is a polynomial-time algorithm that either outputs the answer or reduces to an instance (G′,k′)(G',k') of size polynomial in kk with the same number of minimum solutions. This shows that a meaningful theory of kernelization for counting problems is possible and opens the door for future developments. Our algorithms exploit that if the number of solutions exceeds 2poly(k)2^{\mathsf{poly}(k)}, the size of the input is exponential in terms of kk so that the running time of a parameterized counting algorithm can be bounded by poly(n)\mathsf{poly}(n). Otherwise, we can use gadgets that slightly increase kk to represent choices among 2O(k)2^{O(k)} options by only poly(k)\mathsf{poly}(k) vertices.Comment: Extended abstract appears in the proceedings of IPEC 202

    Sparsification Upper and Lower Bounds for Graphs Problems and Not-All-Equal SAT

    Get PDF
    We present several sparsification lower and upper bounds for classic problems in graph theory and logic. For the problems 4-Coloring, (Directed) Hamiltonian Cycle, and (Connected) Dominating Set, we prove that there is no polynomial-time algorithm that reduces any n-vertex input to an equivalent instance, of an arbitrary problem, with bitsize O(n^{2-epsilon}) for epsilon &gt; 0, unless NP is a subset of coNP/poly and the polynomial-time hierarchy collapses. These results imply that existing linear-vertex kernels for k-Nonblocker and k-Max Leaf Spanning Tree (the parametric duals of (Connected) Dominating Set) cannot be improved to have O(k^{2-epsilon}) edges, unless NP is a subset of NP/poly. We also present a positive result and exhibit a non-trivial sparsification algorithm for d-Not-All-Equal-SAT. We give an algorithm that reduces an n-variable input with clauses of size at most d to an equivalent input with O(n^{d-1}) clauses, for any fixed d. Our algorithm is based on a linear-algebraic proof of Lovász that bounds the number of hyperedges in critically 3-chromatic d-uniform n-vertex hypergraphs by binom{n}{d-1}. We show that our kernel is tight under the assumption that NP is not a subset of NP/poly
    • …
    corecore